Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Anthropogenic warming and nutrient over-enrichment of our oceans have resulted in significant, and often catastrophic, reductions in dissolved oxygen (deoxygenation). Stress on water-breathing animals from this deoxygenation has been shown to occur at all levels of biological organization: cellular, organ, individual, species, population, community, and ecosystem. Most climate forecasts predict increases in ocean deoxygenation; thus, it is essential to develop reliable biological indicators of low-oxygen stress that can be used by regional and global oxygen monitoring efforts to detect and assess the impacts of deoxygenation on ocean life. This review focuses on responses to low-oxygen stress that are manifest at different levels of biological organization and at a variety of spatial and temporal scales. We compare particular attributes of these biological indicators to the dissolved oxygen threshold of response, timescales of response, sensitive life stages and taxa, and the ability to scale the response to oxygen stress across levels of organization. Where there is available evidence, we discuss the interactions of other biological and abiotic stressors on the biological indicators of low-oxygen stress. We address the utility, confounding effects, and implementation of the biological indicators of oxygen stress for research and societal applications. Our hope is that further refinement and dissemination of these oxygen stress indicators will provide more direct support for environmental managers, fisheries and mariculture scientists, conservation professionals, and policymakers to confront the challenges of ocean deoxygenation. An improved understanding of the sensitivity of different ocean species, communities, and ecosystems to low-oxygen stress will empower efforts to design monitoring programs, assess ecosystem health, develop management guidelines, track conditions, and detect low-oxygen events.more » « less
-
In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO 2 DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO 2 DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO 2 DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO 2 DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O 2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O 2 will improve our understanding of the ocean O 2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO 2 DAT will allow scientists to fully harness the increasing volumes of O 2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO 2 DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO 2 DAT is proposed highlighting the efforts needed (e.g., in terms of human resources).more » « less
An official website of the United States government
